el_diablo/src/level_generator.rs

418 lines
16 KiB
Rust
Raw Normal View History

2023-12-04 18:41:21 +01:00
use std::cmp::{max, min};
2024-10-24 08:57:52 +02:00
use std::collections::HashMap;
2023-12-04 18:41:21 +01:00
use std::ops::Range;
use petgraph::algo::min_spanning_tree;
use petgraph::data::*;
use petgraph::graph::Graph;
use petgraph::graph::UnGraph;
use rand::prelude::SliceRandom;
use rand::rngs::ThreadRng;
2024-10-20 14:59:20 +02:00
use rand::Rng;
2023-12-04 18:41:21 +01:00
2023-12-09 17:39:26 +01:00
use crate::artifacts::{Artifact, Chest, Potion};
2023-12-18 16:11:19 +01:00
use crate::level::{Level, StructureElement};
2024-10-25 07:21:34 +02:00
use crate::monster::{create_monster_by_type, Monster, MonsterTypes, Orc, Rat, Snake};
2023-12-07 10:12:44 +01:00
use crate::position::Position;
2023-12-04 18:41:21 +01:00
2024-10-24 08:57:52 +02:00
pub const ROOMS_VERTICAL: usize = 7;
2024-10-23 15:54:33 +02:00
pub const ROOMS_HORIZONTAL: usize = 7;
2023-12-04 18:41:21 +01:00
2024-10-24 08:57:52 +02:00
pub const ROOM_WIDTH: usize = 9;
2024-10-23 15:54:33 +02:00
pub const ROOM_HEIGHT: usize = 6;
2023-12-04 18:41:21 +01:00
#[derive(PartialEq, Copy, Clone)]
enum RoomType {
Start,
End,
StairUp,
StairDown,
BasicRoom,
TreasureRoom,
MonsterRoom,
EmptyRoom,
}
#[derive(Copy, Clone)]
struct ConnectionInfo {
offset: usize,
distance: usize,
}
#[derive(Copy, Clone)]
struct Room {
pub kind: RoomType,
pub offset_x: usize,
pub offset_y: usize,
pub width: usize,
pub height: usize,
pub connection_down: Option<ConnectionInfo>,
pub connection_right: Option<ConnectionInfo>,
}
impl Room {
fn new() -> Self {
Self {
kind: RoomType::EmptyRoom,
offset_x: 0,
offset_y: 0,
width: 0,
height: 0,
connection_down: None,
connection_right: None,
}
}
/// change the size and position of a room randomly within its bounds
fn random(&mut self, rng: &mut ThreadRng) {
let width = rng.gen_range(3..6);
let height = rng.gen_range(3..5);
self.width = width;
self.height = height;
self.offset_x = rng.gen_range(0..(ROOM_WIDTH - width));
self.offset_y = rng.gen_range(0..(ROOM_HEIGHT - height));
}
fn get_x_range(&self) -> Range<usize> {
self.offset_x..self.offset_x + self.width
}
fn get_y_range(&self) -> Range<usize> {
self.offset_y..self.offset_y + self.height
}
}
pub struct LevelGenerator {
rooms: [[Room; ROOMS_HORIZONTAL]; ROOMS_VERTICAL],
2023-12-07 10:12:44 +01:00
level: usize,
2023-12-04 18:41:21 +01:00
}
impl LevelGenerator {
2023-12-09 22:43:06 +01:00
pub fn generate(level: usize, first: bool, last: bool) -> Self {
2023-12-04 18:41:21 +01:00
let mut rng = rand::thread_rng();
let mut rooms = [[Room::new(); ROOMS_HORIZONTAL]; ROOMS_VERTICAL];
let mut graph = UnGraph::<(usize, usize), u16>::default();
// trick the room_connectable function into failing on the first iteration
rooms[0][0].kind = RoomType::BasicRoom;
while !LevelGenerator::rooms_connectable(&rooms) {
2024-10-20 14:59:20 +02:00
let mut room_types: Vec<RoomType> =
Vec::with_capacity(ROOMS_HORIZONTAL * ROOMS_VERTICAL);
2023-12-04 18:41:21 +01:00
// level 0 contains a start room, all others contain a stair up
2023-12-09 22:43:06 +01:00
if first {
2023-12-04 18:41:21 +01:00
room_types.push(RoomType::Start);
} else {
room_types.push(RoomType::StairUp);
}
// level 24 (the last) contains an end room, all others a stair down
2023-12-09 22:43:06 +01:00
if last {
2023-12-04 18:41:21 +01:00
room_types.push(RoomType::End);
} else {
room_types.push(RoomType::StairDown);
}
room_types.push(RoomType::MonsterRoom);
2023-12-07 10:12:44 +01:00
room_types.push(RoomType::TreasureRoom);
2023-12-04 18:41:21 +01:00
// generate a random set of rooms and shuffle them
for _ in room_types.len()..ROOMS_HORIZONTAL * ROOMS_VERTICAL {
match rng.gen_range(1..=100) {
// TODO tune room type distribution
2024-10-20 14:59:20 +02:00
1..=33 => room_types.push(RoomType::EmptyRoom),
34..=66 => room_types.push(RoomType::TreasureRoom),
67..=90 => room_types.push(RoomType::MonsterRoom),
_ => room_types.push(RoomType::BasicRoom),
2023-12-04 18:41:21 +01:00
}
}
room_types.shuffle(&mut rng);
graph.clear();
// place the rooms in the array an add nodes to the graph for every non empty room
2024-10-20 14:59:20 +02:00
for (c, rs) in rooms.iter_mut().enumerate().take(ROOMS_VERTICAL) {
for (r, room) in rs.iter_mut().enumerate().take(ROOMS_HORIZONTAL) {
room.kind = room_types.pop().unwrap();
if room.kind != RoomType::EmptyRoom {
room.random(&mut rng);
2023-12-04 18:41:21 +01:00
graph.add_node((c, r));
}
}
}
}
// add edges to the graph connecting each room to all of its neighbours (max 4 of them)
for c in 0..ROOMS_VERTICAL {
for r in 0..ROOMS_HORIZONTAL {
if rooms[c][r].kind == RoomType::EmptyRoom {
continue;
}
let src_index = graph.node_indices().find(|i| graph[*i] == (c, r)).unwrap();
for r_1 in r + 1..ROOMS_HORIZONTAL {
if rooms[c][r_1].kind != RoomType::EmptyRoom {
2024-10-20 14:59:20 +02:00
let tgt_index = graph
.node_indices()
.find(|i| graph[*i] == (c, r_1))
.unwrap();
2023-12-04 18:41:21 +01:00
// todo use random weight for edge
graph.add_edge(src_index, tgt_index, 1);
break;
}
}
2024-10-20 14:59:20 +02:00
for (c_1, rs) in rooms.iter().enumerate().take(ROOMS_VERTICAL).skip(c + 1) {
if rs[r].kind != RoomType::EmptyRoom {
let tgt_index = graph
.node_indices()
.find(|i| graph[*i] == (c_1, r))
.unwrap();
2023-12-04 18:41:21 +01:00
// todo use random weight for edge
graph.add_edge(src_index, tgt_index, 1);
break;
}
}
}
}
// calculate a minimum spanning tree
2024-10-20 14:59:20 +02:00
let mst: Graph<(usize, usize), u16, petgraph::Undirected> =
Graph::from_elements(min_spanning_tree(&graph));
2023-12-04 18:41:21 +01:00
for edge in mst.raw_edges() {
let src = mst[edge.source()];
let tgt = mst[edge.target()];
let src_room = rooms[src.0][src.1];
let mut tgt_room = rooms[tgt.0][tgt.1];
// cols are the same, either up or down
if src.0 == tgt.0 {
2024-10-20 14:59:20 +02:00
let range =
LevelGenerator::range_overlap(src_room.get_x_range(), tgt_room.get_x_range());
let position: usize = if range.is_empty() {
range.start
2023-12-04 18:41:21 +01:00
} else {
2024-10-20 14:59:20 +02:00
rng.gen_range(range)
};
2023-12-04 18:41:21 +01:00
if src.1 < tgt.1 {
// src to tgt
2024-10-20 14:59:20 +02:00
rooms[src.0][src.1].connection_down = Some(ConnectionInfo {
offset: position,
distance: tgt.1 - src.1,
});
2023-12-04 18:41:21 +01:00
} else {
// tgt to src
2024-10-20 14:59:20 +02:00
tgt_room.connection_down = Some(ConnectionInfo {
offset: position,
distance: src.1 - tgt.1,
});
2023-12-04 18:41:21 +01:00
}
}
// rows are the same, either left or right
if src.1 == tgt.1 {
2024-10-20 14:59:20 +02:00
let range =
LevelGenerator::range_overlap(src_room.get_y_range(), tgt_room.get_y_range());
2023-12-04 18:41:21 +01:00
let mut position: usize;
if range.is_empty() {
position = range.start;
} else {
position = rng.gen_range(range);
}
if src.1 == 0 && position == 0 {
position = 1;
}
if src.0 < tgt.0 {
// src to tgt
2024-10-20 14:59:20 +02:00
rooms[src.0][src.1].connection_right = Some(ConnectionInfo {
offset: position,
distance: tgt.0 - src.0,
});
2023-12-04 18:41:21 +01:00
} else {
// tgt to src
2024-10-20 14:59:20 +02:00
tgt_room.connection_right = Some(ConnectionInfo {
offset: position,
distance: src.1 - tgt.1,
});
2023-12-04 18:41:21 +01:00
}
}
}
2024-10-20 14:59:20 +02:00
LevelGenerator { rooms, level }
2023-12-04 18:41:21 +01:00
}
fn range_overlap(r1: Range<usize>, r2: Range<usize>) -> Range<usize> {
max(r1.start, r2.start)..min(r1.end, r2.end)
}
/// Verifies that for a given matrix of rooms each room has at least one other room in the
/// same row or column.
fn rooms_connectable(rooms: &[[Room; ROOMS_HORIZONTAL]; ROOMS_VERTICAL]) -> bool {
for c in 0..ROOMS_VERTICAL {
for r in 0..ROOMS_HORIZONTAL {
if rooms[c][r].kind != RoomType::EmptyRoom {
let mut connected = 0;
2024-10-20 14:59:20 +02:00
for room in rooms.iter().take(ROOMS_VERTICAL) {
if room[r].kind != RoomType::EmptyRoom {
2023-12-04 18:41:21 +01:00
connected += 1;
}
}
for r1 in 0..ROOMS_HORIZONTAL {
if rooms[c][r1].kind != RoomType::EmptyRoom {
connected += 1;
}
}
if connected <= 2 {
return false;
}
}
}
}
2024-10-20 14:59:20 +02:00
true
2023-12-04 18:41:21 +01:00
}
2024-10-24 08:57:52 +02:00
fn select_monster(position: Position, rng: &mut ThreadRng) -> Box<dyn Monster> {
let level = position.get_level();
let value = rng.gen_range(1..=100);
let t = [
// level 0
2024-10-25 07:21:34 +02:00
HashMap::from([(MonsterTypes::Rat, 1..=100)]),
2024-10-24 08:57:52 +02:00
// level 1
2024-10-25 07:21:34 +02:00
HashMap::from([(MonsterTypes::Rat, 1..=50), (MonsterTypes::Snake, 51..=100)]),
// level 2
HashMap::from([(MonsterTypes::Orc, 1..=100)]),
HashMap::from([(MonsterTypes::Skeleton, 1..=100)]),
2024-10-24 08:57:52 +02:00
];
if level < t.len() {
for (mtype, range) in &t[level] {
if range.contains(&value) {
return create_monster_by_type(mtype, position);
}
}
}
match rng.gen_range(1..=100) {
1..=30 => Box::new(Orc::new_with_position(position)),
31..=60 => Box::new(Snake::new_with_position(position)),
_ => Box::new(Rat::new_with_position(position)),
}
}
2023-12-04 18:41:21 +01:00
pub fn render(&self) -> Level {
let mut rng = rand::thread_rng();
2024-10-20 14:59:20 +02:00
let mut structure = [[StructureElement::Wall; 1 + ROOMS_HORIZONTAL * ROOM_HEIGHT];
1 + ROOMS_VERTICAL * ROOM_WIDTH];
2023-12-04 18:41:21 +01:00
let mut artifacts: Vec<Box<dyn Artifact>> = Vec::with_capacity(10);
2023-12-18 16:11:19 +01:00
let mut enemies: Vec<Box<dyn Monster>> = Vec::with_capacity(10);
2023-12-04 18:41:21 +01:00
let mut start_x: usize = 0;
let mut start_y: usize = 0;
let mut end_x: usize = 0;
let mut end_y: usize = 0;
for c in 0..ROOMS_VERTICAL {
for r in 0..ROOMS_HORIZONTAL {
let top = 1 + r * ROOM_HEIGHT;
let left = 1 + c * ROOM_WIDTH;
let room = self.rooms[c][r];
for x in 0..room.width {
for y in 0..room.height {
2024-10-20 14:59:20 +02:00
structure[left + room.offset_x + x][top + room.offset_y + y] =
StructureElement::Floor;
2023-12-04 18:41:21 +01:00
}
}
if room.kind == RoomType::TreasureRoom {
let t_x = left + room.offset_x + rng.gen_range(0..room.width);
let t_y = top + room.offset_y + rng.gen_range(0..room.height);
2023-12-09 17:39:26 +01:00
// TODO randomize artifacts
match rng.gen_range(1..=100) {
2024-10-20 14:59:20 +02:00
1..=50 => {
artifacts
.push(Box::new(Chest::new(Position::new(self.level, t_x, t_y))));
}
_ => {
artifacts
.push(Box::new(Potion::new(Position::new(self.level, t_x, t_y))));
}
2023-12-09 17:39:26 +01:00
};
2023-12-04 18:41:21 +01:00
}
if room.kind == RoomType::MonsterRoom {
let t_x = left + room.offset_x + rng.gen_range(0..room.width);
let t_y = top + room.offset_y + rng.gen_range(0..room.height);
// TODO randomize enemies here
2024-10-24 08:57:52 +02:00
enemies.push(LevelGenerator::select_monster(
Position::new(self.level, t_x, t_y),
&mut rng,
));
2023-12-04 18:41:21 +01:00
}
2023-12-09 22:43:06 +01:00
if room.kind == RoomType::End || room.kind == RoomType::StairDown {
2023-12-04 18:41:21 +01:00
end_x = left + room.offset_x + rng.gen_range(0..room.width);
end_y = top + room.offset_y + rng.gen_range(0..room.height);
}
if room.kind == RoomType::StairDown {
structure[end_x][end_y] = StructureElement::StairDown;
}
if room.kind == RoomType::End {
structure[end_x][end_y] = StructureElement::End;
}
2023-12-09 22:43:06 +01:00
2023-12-04 18:41:21 +01:00
if room.kind == RoomType::Start || room.kind == RoomType::StairUp {
start_x = left + room.offset_x + rng.gen_range(0..room.width);
start_y = top + room.offset_y + rng.gen_range(0..room.height);
}
if room.kind == RoomType::StairUp {
structure[start_x][start_y] = StructureElement::StairUp;
}
if room.kind == RoomType::Start {
structure[start_x][start_y] = StructureElement::Start;
}
}
}
//
for c in 0..ROOMS_VERTICAL {
for r in 0..ROOMS_HORIZONTAL {
let src_room = self.rooms[c][r];
if let Some(x_conn) = src_room.connection_down {
let tgt_room = self.rooms[c][r + x_conn.distance];
let top = 1 + r * ROOM_HEIGHT + src_room.offset_y;
let left = 1 + c * ROOM_WIDTH + x_conn.offset;
2024-10-20 14:59:20 +02:00
let bottom = 1
+ (r + x_conn.distance) * ROOM_HEIGHT
+ tgt_room.offset_y
+ tgt_room.height;
2023-12-04 18:41:21 +01:00
for i in top..bottom {
if structure[left][i] == StructureElement::Wall {
structure[left][i] = StructureElement::Floor;
}
}
}
if let Some(y_conn) = src_room.connection_right {
let tgt_room = self.rooms[c + y_conn.distance][r];
let top = 1 + r * ROOM_HEIGHT + src_room.offset_y + y_conn.offset - 1;
let left = 1 + c * ROOM_WIDTH + src_room.offset_x;
2024-10-20 14:59:20 +02:00
let right =
1 + (c + y_conn.distance) * ROOM_WIDTH + tgt_room.offset_x + tgt_room.width;
for room in structure.iter_mut().take(right).skip(left) {
if room[top] == StructureElement::Wall {
room[top] = StructureElement::Floor;
2023-12-04 18:41:21 +01:00
}
}
}
}
}
Level {
2023-12-07 10:12:44 +01:00
level: self.level,
2023-12-04 18:41:21 +01:00
structure,
2024-10-20 14:59:20 +02:00
discovered: [[false; 1 + ROOMS_HORIZONTAL * ROOM_HEIGHT];
1 + ROOMS_VERTICAL * ROOM_WIDTH],
2023-12-04 18:41:21 +01:00
monsters: enemies,
artifacts,
start: (start_x, start_y),
end: (end_x, end_y),
2023-12-26 19:11:41 +01:00
rng: rand::thread_rng(),
2023-12-04 18:41:21 +01:00
}
}
}
2023-12-07 10:12:44 +01:00
#[test]
fn test_level_gen() {
2023-12-09 22:43:06 +01:00
let level = LevelGenerator::generate(23, false, false).render();
2023-12-07 10:12:44 +01:00
assert_eq!(level.level, 23);
assert_ne!(level.start, (0, 0));
assert_ne!(level.end, (0, 0));
assert_ne!(level.start, level.end);
assert_ne!(level.monsters.len(), 0);
assert_ne!(level.artifacts.len(), 0);
2023-12-09 22:43:06 +01:00
}