737 lines
30 KiB
C
737 lines
30 KiB
C
/* Name: usbdrv.h
|
|
* Project: V-USB, virtual USB port for Atmel's(r) AVR(r) microcontrollers
|
|
* Author: Christian Starkjohann
|
|
* Creation Date: 2004-12-29
|
|
* Tabsize: 4
|
|
* Copyright: (c) 2005 by OBJECTIVE DEVELOPMENT Software GmbH
|
|
* License: GNU GPL v2 (see License.txt), GNU GPL v3 or proprietary (CommercialLicense.txt)
|
|
* This Revision: $Id$
|
|
*/
|
|
|
|
#ifndef __usbdrv_h_included__
|
|
#define __usbdrv_h_included__
|
|
#include "usbconfig.h"
|
|
#include "usbportability.h"
|
|
|
|
/*
|
|
Hardware Prerequisites:
|
|
=======================
|
|
USB lines D+ and D- MUST be wired to the same I/O port. We recommend that D+
|
|
triggers the interrupt (best achieved by using INT0 for D+), but it is also
|
|
possible to trigger the interrupt from D-. If D- is used, interrupts are also
|
|
triggered by SOF packets. D- requires a pull-up of 1.5k to +3.5V (and the
|
|
device must be powered at 3.5V) to identify as low-speed USB device. A
|
|
pull-down or pull-up of 1M SHOULD be connected from D+ to +3.5V to prevent
|
|
interference when no USB master is connected. If you use Zener diodes to limit
|
|
the voltage on D+ and D-, you MUST use a pull-down resistor, not a pull-up.
|
|
We use D+ as interrupt source and not D- because it does not trigger on
|
|
keep-alive and RESET states. If you want to count keep-alive events with
|
|
USB_COUNT_SOF, you MUST use D- as an interrupt source.
|
|
|
|
As a compile time option, the 1.5k pull-up resistor on D- can be made
|
|
switchable to allow the device to disconnect at will. See the definition of
|
|
usbDeviceConnect() and usbDeviceDisconnect() further down in this file.
|
|
|
|
Please adapt the values in usbconfig.h according to your hardware!
|
|
|
|
The device MUST be clocked at exactly 12 MHz, 15 MHz, 16 MHz or 20 MHz
|
|
or at 12.8 MHz resp. 16.5 MHz +/- 1%. See usbconfig-prototype.h for details.
|
|
|
|
|
|
Limitations:
|
|
============
|
|
Robustness with respect to communication errors:
|
|
The driver assumes error-free communication. It DOES check for errors in
|
|
the PID, but does NOT check bit stuffing errors, SE0 in middle of a byte,
|
|
token CRC (5 bit) and data CRC (16 bit). CRC checks can not be performed due
|
|
to timing constraints: We must start sending a reply within 7 bit times.
|
|
Bit stuffing and misplaced SE0 would have to be checked in real-time, but CPU
|
|
performance does not permit that. The driver does not check Data0/Data1
|
|
toggling, but application software can implement the check.
|
|
|
|
Input characteristics:
|
|
Since no differential receiver circuit is used, electrical interference
|
|
robustness may suffer. The driver samples only one of the data lines with
|
|
an ordinary I/O pin's input characteristics. However, since this is only a
|
|
low speed USB implementation and the specification allows for 8 times the
|
|
bit rate over the same hardware, we should be on the safe side. Even the spec
|
|
requires detection of asymmetric states at high bit rate for SE0 detection.
|
|
|
|
Number of endpoints:
|
|
The driver supports the following endpoints:
|
|
|
|
- Endpoint 0, the default control endpoint.
|
|
- Any number of interrupt- or bulk-out endpoints. The data is sent to
|
|
usbFunctionWriteOut() and USB_CFG_IMPLEMENT_FN_WRITEOUT must be defined
|
|
to 1 to activate this feature. The endpoint number can be found in the
|
|
global variable 'usbRxToken'.
|
|
- One default interrupt- or bulk-in endpoint. This endpoint is used for
|
|
interrupt- or bulk-in transfers which are not handled by any other endpoint.
|
|
You must define USB_CFG_HAVE_INTRIN_ENDPOINT in order to activate this
|
|
feature and call usbSetInterrupt() to send interrupt/bulk data.
|
|
- One additional interrupt- or bulk-in endpoint. This was endpoint 3 in
|
|
previous versions of this driver but can now be configured to any endpoint
|
|
number. You must define USB_CFG_HAVE_INTRIN_ENDPOINT3 in order to activate
|
|
this feature and call usbSetInterrupt3() to send interrupt/bulk data. The
|
|
endpoint number can be set with USB_CFG_EP3_NUMBER.
|
|
|
|
Please note that the USB standard forbids bulk endpoints for low speed devices!
|
|
Most operating systems allow them anyway, but the AVR will spend 90% of the CPU
|
|
time in the USB interrupt polling for bulk data.
|
|
|
|
Maximum data payload:
|
|
Data payload of control in and out transfers may be up to 254 bytes. In order
|
|
to accept payload data of out transfers, you need to implement
|
|
'usbFunctionWrite()'.
|
|
|
|
USB Suspend Mode supply current:
|
|
The USB standard limits power consumption to 500uA when the bus is in suspend
|
|
mode. This is not a problem for self-powered devices since they don't need
|
|
bus power anyway. Bus-powered devices can achieve this only by putting the
|
|
CPU in sleep mode. The driver does not implement suspend handling by itself.
|
|
However, the application may implement activity monitoring and wakeup from
|
|
sleep. The host sends regular SE0 states on the bus to keep it active. These
|
|
SE0 states can be detected by using D- as the interrupt source. Define
|
|
USB_COUNT_SOF to 1 and use the global variable usbSofCount to check for bus
|
|
activity.
|
|
|
|
Operation without an USB master:
|
|
The driver behaves neutral without connection to an USB master if D- reads
|
|
as 1. To avoid spurious interrupts, we recommend a high impedance (e.g. 1M)
|
|
pull-down or pull-up resistor on D+ (interrupt). If Zener diodes are used,
|
|
use a pull-down. If D- becomes statically 0, the driver may block in the
|
|
interrupt routine.
|
|
|
|
Interrupt latency:
|
|
The application must ensure that the USB interrupt is not disabled for more
|
|
than 25 cycles (this is for 12 MHz, faster clocks allow longer latency).
|
|
This implies that all interrupt routines must either have the "ISR_NOBLOCK"
|
|
attribute set (see "avr/interrupt.h") or be written in assembler with "sei"
|
|
as the first instruction.
|
|
|
|
Maximum interrupt duration / CPU cycle consumption:
|
|
The driver handles all USB communication during the interrupt service
|
|
routine. The routine will not return before an entire USB message is received
|
|
and the reply is sent. This may be up to ca. 1200 cycles @ 12 MHz (= 100us) if
|
|
the host conforms to the standard. The driver will consume CPU cycles for all
|
|
USB messages, even if they address another (low-speed) device on the same bus.
|
|
|
|
*/
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* --------------------------- Module Interface ---------------------------- */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
#define USBDRV_VERSION 20120109
|
|
/* This define uniquely identifies a driver version. It is a decimal number
|
|
* constructed from the driver's release date in the form YYYYMMDD. If the
|
|
* driver's behavior or interface changes, you can use this constant to
|
|
* distinguish versions. If it is not defined, the driver's release date is
|
|
* older than 2006-01-25.
|
|
*/
|
|
|
|
|
|
#ifndef USB_PUBLIC
|
|
#define USB_PUBLIC
|
|
#endif
|
|
/* USB_PUBLIC is used as declaration attribute for all functions exported by
|
|
* the USB driver. The default is no attribute (see above). You may define it
|
|
* to static either in usbconfig.h or from the command line if you include
|
|
* usbdrv.c instead of linking against it. Including the C module of the driver
|
|
* directly in your code saves a couple of bytes in flash memory.
|
|
*/
|
|
|
|
#ifndef __ASSEMBLER__
|
|
#ifndef uchar
|
|
#define uchar unsigned char
|
|
#endif
|
|
#ifndef schar
|
|
#define schar signed char
|
|
#endif
|
|
/* shortcuts for well defined 8 bit integer types */
|
|
|
|
#if USB_CFG_LONG_TRANSFERS /* if more than 254 bytes transfer size required */
|
|
# define usbMsgLen_t unsigned
|
|
#else
|
|
# define usbMsgLen_t uchar
|
|
#endif
|
|
/* usbMsgLen_t is the data type used for transfer lengths. By default, it is
|
|
* defined to uchar, allowing a maximum of 254 bytes (255 is reserved for
|
|
* USB_NO_MSG below). If the usbconfig.h defines USB_CFG_LONG_TRANSFERS to 1,
|
|
* a 16 bit data type is used, allowing up to 16384 bytes (the rest is used
|
|
* for flags in the descriptor configuration).
|
|
*/
|
|
#define USB_NO_MSG ((usbMsgLen_t)-1) /* constant meaning "no message" */
|
|
|
|
struct usbRequest; /* forward declaration */
|
|
|
|
USB_PUBLIC void usbInit(void);
|
|
/* This function must be called before interrupts are enabled and the main
|
|
* loop is entered. We exepct that the PORT and DDR bits for D+ and D- have
|
|
* not been changed from their default status (which is 0). If you have changed
|
|
* them, set both back to 0 (configure them as input with no internal pull-up).
|
|
*/
|
|
USB_PUBLIC void usbPoll(void);
|
|
/* This function must be called at regular intervals from the main loop.
|
|
* Maximum delay between calls is somewhat less than 50ms (USB timeout for
|
|
* accepting a Setup message). Otherwise the device will not be recognized.
|
|
* Please note that debug outputs through the UART take ~ 0.5ms per byte
|
|
* at 19200 bps.
|
|
*/
|
|
extern uchar *usbMsgPtr;
|
|
/* This variable may be used to pass transmit data to the driver from the
|
|
* implementation of usbFunctionWrite(). It is also used internally by the
|
|
* driver for standard control requests.
|
|
*/
|
|
USB_PUBLIC usbMsgLen_t usbFunctionSetup(uchar data[8]);
|
|
/* This function is called when the driver receives a SETUP transaction from
|
|
* the host which is not answered by the driver itself (in practice: class and
|
|
* vendor requests). All control transfers start with a SETUP transaction where
|
|
* the host communicates the parameters of the following (optional) data
|
|
* transfer. The SETUP data is available in the 'data' parameter which can
|
|
* (and should) be casted to 'usbRequest_t *' for a more user-friendly access
|
|
* to parameters.
|
|
*
|
|
* If the SETUP indicates a control-in transfer, you should provide the
|
|
* requested data to the driver. There are two ways to transfer this data:
|
|
* (1) Set the global pointer 'usbMsgPtr' to the base of the static RAM data
|
|
* block and return the length of the data in 'usbFunctionSetup()'. The driver
|
|
* will handle the rest. Or (2) return USB_NO_MSG in 'usbFunctionSetup()'. The
|
|
* driver will then call 'usbFunctionRead()' when data is needed. See the
|
|
* documentation for usbFunctionRead() for details.
|
|
*
|
|
* If the SETUP indicates a control-out transfer, the only way to receive the
|
|
* data from the host is through the 'usbFunctionWrite()' call. If you
|
|
* implement this function, you must return USB_NO_MSG in 'usbFunctionSetup()'
|
|
* to indicate that 'usbFunctionWrite()' should be used. See the documentation
|
|
* of this function for more information. If you just want to ignore the data
|
|
* sent by the host, return 0 in 'usbFunctionSetup()'.
|
|
*
|
|
* Note that calls to the functions usbFunctionRead() and usbFunctionWrite()
|
|
* are only done if enabled by the configuration in usbconfig.h.
|
|
*/
|
|
USB_PUBLIC usbMsgLen_t usbFunctionDescriptor(struct usbRequest *rq);
|
|
/* You need to implement this function ONLY if you provide USB descriptors at
|
|
* runtime (which is an expert feature). It is very similar to
|
|
* usbFunctionSetup() above, but it is called only to request USB descriptor
|
|
* data. See the documentation of usbFunctionSetup() above for more info.
|
|
*/
|
|
#if USB_CFG_HAVE_INTRIN_ENDPOINT
|
|
USB_PUBLIC void usbSetInterrupt(uchar *data, uchar len);
|
|
/* This function sets the message which will be sent during the next interrupt
|
|
* IN transfer. The message is copied to an internal buffer and must not exceed
|
|
* a length of 8 bytes. The message may be 0 bytes long just to indicate the
|
|
* interrupt status to the host.
|
|
* If you need to transfer more bytes, use a control read after the interrupt.
|
|
*/
|
|
#define usbInterruptIsReady() (usbTxLen1 & 0x10)
|
|
/* This macro indicates whether the last interrupt message has already been
|
|
* sent. If you set a new interrupt message before the old was sent, the
|
|
* message already buffered will be lost.
|
|
*/
|
|
#if USB_CFG_HAVE_INTRIN_ENDPOINT3
|
|
USB_PUBLIC void usbSetInterrupt3(uchar *data, uchar len);
|
|
#define usbInterruptIsReady3() (usbTxLen3 & 0x10)
|
|
/* Same as above for endpoint 3 */
|
|
#endif
|
|
#endif /* USB_CFG_HAVE_INTRIN_ENDPOINT */
|
|
#if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* simplified interface for backward compatibility */
|
|
#define usbHidReportDescriptor usbDescriptorHidReport
|
|
/* should be declared as: PROGMEM char usbHidReportDescriptor[]; */
|
|
/* If you implement an HID device, you need to provide a report descriptor.
|
|
* The HID report descriptor syntax is a bit complex. If you understand how
|
|
* report descriptors are constructed, we recommend that you use the HID
|
|
* Descriptor Tool from usb.org, see http://www.usb.org/developers/hidpage/.
|
|
* Otherwise you should probably start with a working example.
|
|
*/
|
|
#endif /* USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH */
|
|
#if USB_CFG_IMPLEMENT_FN_WRITE
|
|
USB_PUBLIC uchar usbFunctionWrite(uchar *data, uchar len);
|
|
/* This function is called by the driver to provide a control transfer's
|
|
* payload data (control-out). It is called in chunks of up to 8 bytes. The
|
|
* total count provided in the current control transfer can be obtained from
|
|
* the 'length' property in the setup data. If an error occurred during
|
|
* processing, return 0xff (== -1). The driver will answer the entire transfer
|
|
* with a STALL token in this case. If you have received the entire payload
|
|
* successfully, return 1. If you expect more data, return 0. If you don't
|
|
* know whether the host will send more data (you should know, the total is
|
|
* provided in the usbFunctionSetup() call!), return 1.
|
|
* NOTE: If you return 0xff for STALL, 'usbFunctionWrite()' may still be called
|
|
* for the remaining data. You must continue to return 0xff for STALL in these
|
|
* calls.
|
|
* In order to get usbFunctionWrite() called, define USB_CFG_IMPLEMENT_FN_WRITE
|
|
* to 1 in usbconfig.h and return 0xff in usbFunctionSetup()..
|
|
*/
|
|
#endif /* USB_CFG_IMPLEMENT_FN_WRITE */
|
|
#if USB_CFG_IMPLEMENT_FN_READ
|
|
USB_PUBLIC uchar usbFunctionRead(uchar *data, uchar len);
|
|
/* This function is called by the driver to ask the application for a control
|
|
* transfer's payload data (control-in). It is called in chunks of up to 8
|
|
* bytes each. You should copy the data to the location given by 'data' and
|
|
* return the actual number of bytes copied. If you return less than requested,
|
|
* the control-in transfer is terminated. If you return 0xff, the driver aborts
|
|
* the transfer with a STALL token.
|
|
* In order to get usbFunctionRead() called, define USB_CFG_IMPLEMENT_FN_READ
|
|
* to 1 in usbconfig.h and return 0xff in usbFunctionSetup()..
|
|
*/
|
|
#endif /* USB_CFG_IMPLEMENT_FN_READ */
|
|
|
|
extern uchar usbRxToken; /* may be used in usbFunctionWriteOut() below */
|
|
#if USB_CFG_IMPLEMENT_FN_WRITEOUT
|
|
USB_PUBLIC void usbFunctionWriteOut(uchar *data, uchar len);
|
|
/* This function is called by the driver when data is received on an interrupt-
|
|
* or bulk-out endpoint. The endpoint number can be found in the global
|
|
* variable usbRxToken. You must define USB_CFG_IMPLEMENT_FN_WRITEOUT to 1 in
|
|
* usbconfig.h to get this function called.
|
|
*/
|
|
#endif /* USB_CFG_IMPLEMENT_FN_WRITEOUT */
|
|
#ifdef USB_CFG_PULLUP_IOPORTNAME
|
|
#define usbDeviceConnect() ((USB_PULLUP_DDR |= (1<<USB_CFG_PULLUP_BIT)), \
|
|
(USB_PULLUP_OUT |= (1<<USB_CFG_PULLUP_BIT)))
|
|
#define usbDeviceDisconnect() ((USB_PULLUP_DDR &= ~(1<<USB_CFG_PULLUP_BIT)), \
|
|
(USB_PULLUP_OUT &= ~(1<<USB_CFG_PULLUP_BIT)))
|
|
#else /* USB_CFG_PULLUP_IOPORTNAME */
|
|
#define usbDeviceConnect() (USBDDR &= ~(1<<USBMINUS))
|
|
#define usbDeviceDisconnect() (USBDDR |= (1<<USBMINUS))
|
|
#endif /* USB_CFG_PULLUP_IOPORTNAME */
|
|
/* The macros usbDeviceConnect() and usbDeviceDisconnect() (intended to look
|
|
* like a function) connect resp. disconnect the device from the host's USB.
|
|
* If the constants USB_CFG_PULLUP_IOPORT and USB_CFG_PULLUP_BIT are defined
|
|
* in usbconfig.h, a disconnect consists of removing the pull-up resisitor
|
|
* from D-, otherwise the disconnect is done by brute-force pulling D- to GND.
|
|
* This does not conform to the spec, but it works.
|
|
* Please note that the USB interrupt must be disabled while the device is
|
|
* in disconnected state, or the interrupt handler will hang! You can either
|
|
* turn off the USB interrupt selectively with
|
|
* USB_INTR_ENABLE &= ~(1 << USB_INTR_ENABLE_BIT)
|
|
* or use cli() to disable interrupts globally.
|
|
*/
|
|
extern unsigned usbCrc16(unsigned data, uchar len);
|
|
#define usbCrc16(data, len) usbCrc16((unsigned)(data), len)
|
|
/* This function calculates the binary complement of the data CRC used in
|
|
* USB data packets. The value is used to build raw transmit packets.
|
|
* You may want to use this function for data checksums or to verify received
|
|
* data. We enforce 16 bit calling conventions for compatibility with IAR's
|
|
* tiny memory model.
|
|
*/
|
|
extern unsigned usbCrc16Append(unsigned data, uchar len);
|
|
#define usbCrc16Append(data, len) usbCrc16Append((unsigned)(data), len)
|
|
/* This function is equivalent to usbCrc16() above, except that it appends
|
|
* the 2 bytes CRC (lowbyte first) in the 'data' buffer after reading 'len'
|
|
* bytes.
|
|
*/
|
|
#if USB_CFG_HAVE_MEASURE_FRAME_LENGTH
|
|
extern unsigned usbMeasureFrameLength(void);
|
|
/* This function MUST be called IMMEDIATELY AFTER USB reset and measures 1/7 of
|
|
* the number of CPU cycles during one USB frame minus one low speed bit
|
|
* length. In other words: return value = 1499 * (F_CPU / 10.5 MHz)
|
|
* Since this is a busy wait, you MUST disable all interrupts with cli() before
|
|
* calling this function.
|
|
* This can be used to calibrate the AVR's RC oscillator.
|
|
*/
|
|
#endif
|
|
extern uchar usbConfiguration;
|
|
/* This value contains the current configuration set by the host. The driver
|
|
* allows setting and querying of this variable with the USB SET_CONFIGURATION
|
|
* and GET_CONFIGURATION requests, but does not use it otherwise.
|
|
* You may want to reflect the "configured" status with a LED on the device or
|
|
* switch on high power parts of the circuit only if the device is configured.
|
|
*/
|
|
#if USB_COUNT_SOF
|
|
extern volatile uchar usbSofCount;
|
|
/* This variable is incremented on every SOF packet. It is only available if
|
|
* the macro USB_COUNT_SOF is defined to a value != 0.
|
|
*/
|
|
#endif
|
|
#if USB_CFG_CHECK_DATA_TOGGLING
|
|
extern uchar usbCurrentDataToken;
|
|
/* This variable can be checked in usbFunctionWrite() and usbFunctionWriteOut()
|
|
* to ignore duplicate packets.
|
|
*/
|
|
#endif
|
|
|
|
#define USB_STRING_DESCRIPTOR_HEADER(stringLength) ((2*(stringLength)+2) | (3<<8))
|
|
/* This macro builds a descriptor header for a string descriptor given the
|
|
* string's length. See usbdrv.c for an example how to use it.
|
|
*/
|
|
#if USB_CFG_HAVE_FLOWCONTROL
|
|
extern volatile schar usbRxLen;
|
|
#define usbDisableAllRequests() usbRxLen = -1
|
|
/* Must be called from usbFunctionWrite(). This macro disables all data input
|
|
* from the USB interface. Requests from the host are answered with a NAK
|
|
* while they are disabled.
|
|
*/
|
|
#define usbEnableAllRequests() usbRxLen = 0
|
|
/* May only be called if requests are disabled. This macro enables input from
|
|
* the USB interface after it has been disabled with usbDisableAllRequests().
|
|
*/
|
|
#define usbAllRequestsAreDisabled() (usbRxLen < 0)
|
|
/* Use this macro to find out whether requests are disabled. It may be needed
|
|
* to ensure that usbEnableAllRequests() is never called when requests are
|
|
* enabled.
|
|
*/
|
|
#endif
|
|
|
|
#define USB_SET_DATATOKEN1(token) usbTxBuf1[0] = token
|
|
#define USB_SET_DATATOKEN3(token) usbTxBuf3[0] = token
|
|
/* These two macros can be used by application software to reset data toggling
|
|
* for interrupt-in endpoints 1 and 3. Since the token is toggled BEFORE
|
|
* sending data, you must set the opposite value of the token which should come
|
|
* first.
|
|
*/
|
|
|
|
#endif /* __ASSEMBLER__ */
|
|
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* ----------------- Definitions for Descriptor Properties ----------------- */
|
|
/* ------------------------------------------------------------------------- */
|
|
/* This is advanced stuff. See usbconfig-prototype.h for more information
|
|
* about the various methods to define USB descriptors. If you do nothing,
|
|
* the default descriptors will be used.
|
|
*/
|
|
#define USB_PROP_IS_DYNAMIC (1 << 14)
|
|
/* If this property is set for a descriptor, usbFunctionDescriptor() will be
|
|
* used to obtain the particular descriptor. Data directly returned via
|
|
* usbMsgPtr are FLASH data by default, combine (OR) with USB_PROP_IS_RAM to
|
|
* return RAM data.
|
|
*/
|
|
#define USB_PROP_IS_RAM (1 << 15)
|
|
/* If this property is set for a descriptor, the data is read from RAM
|
|
* memory instead of Flash. The property is used for all methods to provide
|
|
* external descriptors.
|
|
*/
|
|
#define USB_PROP_LENGTH(len) ((len) & 0x3fff)
|
|
/* If a static external descriptor is used, this is the total length of the
|
|
* descriptor in bytes.
|
|
*/
|
|
|
|
/* all descriptors which may have properties: */
|
|
#ifndef USB_CFG_DESCR_PROPS_DEVICE
|
|
#define USB_CFG_DESCR_PROPS_DEVICE 0
|
|
#endif
|
|
#ifndef USB_CFG_DESCR_PROPS_CONFIGURATION
|
|
#define USB_CFG_DESCR_PROPS_CONFIGURATION 0
|
|
#endif
|
|
#ifndef USB_CFG_DESCR_PROPS_STRINGS
|
|
#define USB_CFG_DESCR_PROPS_STRINGS 0
|
|
#endif
|
|
#ifndef USB_CFG_DESCR_PROPS_STRING_0
|
|
#define USB_CFG_DESCR_PROPS_STRING_0 0
|
|
#endif
|
|
#ifndef USB_CFG_DESCR_PROPS_STRING_VENDOR
|
|
#define USB_CFG_DESCR_PROPS_STRING_VENDOR 0
|
|
#endif
|
|
#ifndef USB_CFG_DESCR_PROPS_STRING_PRODUCT
|
|
#define USB_CFG_DESCR_PROPS_STRING_PRODUCT 0
|
|
#endif
|
|
#ifndef USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER
|
|
#define USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER 0
|
|
#endif
|
|
#ifndef USB_CFG_DESCR_PROPS_HID
|
|
#define USB_CFG_DESCR_PROPS_HID 0
|
|
#endif
|
|
#if !(USB_CFG_DESCR_PROPS_HID_REPORT)
|
|
# undef USB_CFG_DESCR_PROPS_HID_REPORT
|
|
# if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH /* do some backward compatibility tricks */
|
|
# define USB_CFG_DESCR_PROPS_HID_REPORT USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH
|
|
# else
|
|
# define USB_CFG_DESCR_PROPS_HID_REPORT 0
|
|
# endif
|
|
#endif
|
|
#ifndef USB_CFG_DESCR_PROPS_UNKNOWN
|
|
#define USB_CFG_DESCR_PROPS_UNKNOWN 0
|
|
#endif
|
|
|
|
/* ------------------ forward declaration of descriptors ------------------- */
|
|
/* If you use external static descriptors, they must be stored in global
|
|
* arrays as declared below:
|
|
*/
|
|
#ifndef __ASSEMBLER__
|
|
extern
|
|
#if !(USB_CFG_DESCR_PROPS_DEVICE & USB_PROP_IS_RAM)
|
|
PROGMEM const
|
|
#endif
|
|
char usbDescriptorDevice[];
|
|
|
|
extern
|
|
#if !(USB_CFG_DESCR_PROPS_CONFIGURATION & USB_PROP_IS_RAM)
|
|
PROGMEM const
|
|
#endif
|
|
char usbDescriptorConfiguration[];
|
|
|
|
extern
|
|
#if !(USB_CFG_DESCR_PROPS_HID_REPORT & USB_PROP_IS_RAM)
|
|
PROGMEM const
|
|
#endif
|
|
char usbDescriptorHidReport[];
|
|
|
|
extern
|
|
#if !(USB_CFG_DESCR_PROPS_STRING_0 & USB_PROP_IS_RAM)
|
|
PROGMEM const
|
|
#endif
|
|
char usbDescriptorString0[];
|
|
|
|
extern
|
|
#if !(USB_CFG_DESCR_PROPS_STRING_VENDOR & USB_PROP_IS_RAM)
|
|
PROGMEM const
|
|
#endif
|
|
int usbDescriptorStringVendor[];
|
|
|
|
extern
|
|
#if !(USB_CFG_DESCR_PROPS_STRING_PRODUCT & USB_PROP_IS_RAM)
|
|
PROGMEM const
|
|
#endif
|
|
int usbDescriptorStringDevice[];
|
|
|
|
extern
|
|
#if !(USB_CFG_DESCR_PROPS_STRING_SERIAL_NUMBER & USB_PROP_IS_RAM)
|
|
PROGMEM const
|
|
#endif
|
|
int usbDescriptorStringSerialNumber[];
|
|
|
|
#endif /* __ASSEMBLER__ */
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* ------------------------ General Purpose Macros ------------------------- */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
#define USB_CONCAT(a, b) a ## b
|
|
#define USB_CONCAT_EXPANDED(a, b) USB_CONCAT(a, b)
|
|
|
|
#define USB_OUTPORT(name) USB_CONCAT(PORT, name)
|
|
#define USB_INPORT(name) USB_CONCAT(PIN, name)
|
|
#define USB_DDRPORT(name) USB_CONCAT(DDR, name)
|
|
/* The double-define trick above lets us concatenate strings which are
|
|
* defined by macros.
|
|
*/
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* ------------------------- Constant definitions -------------------------- */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
#if !defined __ASSEMBLER__ && (!defined USB_CFG_VENDOR_ID || !defined USB_CFG_DEVICE_ID)
|
|
#warning "You should define USB_CFG_VENDOR_ID and USB_CFG_DEVICE_ID in usbconfig.h"
|
|
/* If the user has not defined IDs, we default to obdev's free IDs.
|
|
* See USB-IDs-for-free.txt for details.
|
|
*/
|
|
#endif
|
|
|
|
/* make sure we have a VID and PID defined, byte order is lowbyte, highbyte */
|
|
#ifndef USB_CFG_VENDOR_ID
|
|
# define USB_CFG_VENDOR_ID 0xc0, 0x16 /* = 0x16c0 = 5824 = voti.nl */
|
|
#endif
|
|
|
|
#ifndef USB_CFG_DEVICE_ID
|
|
# if USB_CFG_HID_REPORT_DESCRIPTOR_LENGTH
|
|
# define USB_CFG_DEVICE_ID 0xdf, 0x05 /* = 0x5df = 1503, shared PID for HIDs */
|
|
# elif USB_CFG_INTERFACE_CLASS == 2
|
|
# define USB_CFG_DEVICE_ID 0xe1, 0x05 /* = 0x5e1 = 1505, shared PID for CDC Modems */
|
|
# else
|
|
# define USB_CFG_DEVICE_ID 0xdc, 0x05 /* = 0x5dc = 1500, obdev's free PID */
|
|
# endif
|
|
#endif
|
|
|
|
/* Derive Output, Input and DataDirection ports from port names */
|
|
#ifndef USB_CFG_IOPORTNAME
|
|
#error "You must define USB_CFG_IOPORTNAME in usbconfig.h, see usbconfig-prototype.h"
|
|
#endif
|
|
|
|
#define USBOUT USB_OUTPORT(USB_CFG_IOPORTNAME)
|
|
#define USB_PULLUP_OUT USB_OUTPORT(USB_CFG_PULLUP_IOPORTNAME)
|
|
#define USBIN USB_INPORT(USB_CFG_IOPORTNAME)
|
|
#define USBDDR USB_DDRPORT(USB_CFG_IOPORTNAME)
|
|
#define USB_PULLUP_DDR USB_DDRPORT(USB_CFG_PULLUP_IOPORTNAME)
|
|
|
|
#define USBMINUS USB_CFG_DMINUS_BIT
|
|
#define USBPLUS USB_CFG_DPLUS_BIT
|
|
#define USBIDLE (1<<USB_CFG_DMINUS_BIT) /* value representing J state */
|
|
#define USBMASK ((1<<USB_CFG_DPLUS_BIT) | (1<<USB_CFG_DMINUS_BIT)) /* mask for USB I/O bits */
|
|
|
|
/* defines for backward compatibility with older driver versions: */
|
|
#define USB_CFG_IOPORT USB_OUTPORT(USB_CFG_IOPORTNAME)
|
|
#ifdef USB_CFG_PULLUP_IOPORTNAME
|
|
#define USB_CFG_PULLUP_IOPORT USB_OUTPORT(USB_CFG_PULLUP_IOPORTNAME)
|
|
#endif
|
|
|
|
#ifndef USB_CFG_EP3_NUMBER /* if not defined in usbconfig.h */
|
|
#define USB_CFG_EP3_NUMBER 3
|
|
#endif
|
|
|
|
#ifndef USB_CFG_HAVE_INTRIN_ENDPOINT3
|
|
#define USB_CFG_HAVE_INTRIN_ENDPOINT3 0
|
|
#endif
|
|
|
|
#define USB_BUFSIZE 11 /* PID, 8 bytes data, 2 bytes CRC */
|
|
|
|
/* ----- Try to find registers and bits responsible for ext interrupt 0 ----- */
|
|
|
|
#ifndef USB_INTR_CFG /* allow user to override our default */
|
|
# if defined EICRA
|
|
# define USB_INTR_CFG EICRA
|
|
# else
|
|
# define USB_INTR_CFG MCUCR
|
|
# endif
|
|
#endif
|
|
#ifndef USB_INTR_CFG_SET /* allow user to override our default */
|
|
# if defined(USB_COUNT_SOF) || defined(USB_SOF_HOOK)
|
|
# define USB_INTR_CFG_SET (1 << ISC01) /* cfg for falling edge */
|
|
/* If any SOF logic is used, the interrupt must be wired to D- where
|
|
* we better trigger on falling edge
|
|
*/
|
|
# else
|
|
# define USB_INTR_CFG_SET ((1 << ISC00) | (1 << ISC01)) /* cfg for rising edge */
|
|
# endif
|
|
#endif
|
|
#ifndef USB_INTR_CFG_CLR /* allow user to override our default */
|
|
# define USB_INTR_CFG_CLR 0 /* no bits to clear */
|
|
#endif
|
|
|
|
#ifndef USB_INTR_ENABLE /* allow user to override our default */
|
|
# if defined GIMSK
|
|
# define USB_INTR_ENABLE GIMSK
|
|
# elif defined EIMSK
|
|
# define USB_INTR_ENABLE EIMSK
|
|
# else
|
|
# define USB_INTR_ENABLE GICR
|
|
# endif
|
|
#endif
|
|
#ifndef USB_INTR_ENABLE_BIT /* allow user to override our default */
|
|
# define USB_INTR_ENABLE_BIT INT0
|
|
#endif
|
|
|
|
#ifndef USB_INTR_PENDING /* allow user to override our default */
|
|
# if defined EIFR
|
|
# define USB_INTR_PENDING EIFR
|
|
# else
|
|
# define USB_INTR_PENDING GIFR
|
|
# endif
|
|
#endif
|
|
#ifndef USB_INTR_PENDING_BIT /* allow user to override our default */
|
|
# define USB_INTR_PENDING_BIT INTF0
|
|
#endif
|
|
|
|
/*
|
|
The defines above don't work for the following chips
|
|
at90c8534: no ISC0?, no PORTB, can't find a data sheet
|
|
at86rf401: no PORTB, no MCUCR etc, low clock rate
|
|
atmega103: no ISC0? (maybe omission in header, can't find data sheet)
|
|
atmega603: not defined in avr-libc
|
|
at43usb320, at43usb355, at76c711: have USB anyway
|
|
at94k: is different...
|
|
|
|
at90s1200, attiny11, attiny12, attiny15, attiny28: these have no RAM
|
|
*/
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
/* ----------------- USB Specification Constants and Types ----------------- */
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
/* USB Token values */
|
|
#define USBPID_SETUP 0x2d
|
|
#define USBPID_OUT 0xe1
|
|
#define USBPID_IN 0x69
|
|
#define USBPID_DATA0 0xc3
|
|
#define USBPID_DATA1 0x4b
|
|
|
|
#define USBPID_ACK 0xd2
|
|
#define USBPID_NAK 0x5a
|
|
#define USBPID_STALL 0x1e
|
|
|
|
#ifndef USB_INITIAL_DATATOKEN
|
|
#define USB_INITIAL_DATATOKEN USBPID_DATA1
|
|
#endif
|
|
|
|
#ifndef __ASSEMBLER__
|
|
|
|
typedef struct usbTxStatus{
|
|
volatile uchar len;
|
|
uchar buffer[USB_BUFSIZE];
|
|
}usbTxStatus_t;
|
|
|
|
extern usbTxStatus_t usbTxStatus1, usbTxStatus3;
|
|
#define usbTxLen1 usbTxStatus1.len
|
|
#define usbTxBuf1 usbTxStatus1.buffer
|
|
#define usbTxLen3 usbTxStatus3.len
|
|
#define usbTxBuf3 usbTxStatus3.buffer
|
|
|
|
|
|
typedef union usbWord{
|
|
unsigned word;
|
|
uchar bytes[2];
|
|
}usbWord_t;
|
|
|
|
typedef struct usbRequest{
|
|
uchar bmRequestType;
|
|
uchar bRequest;
|
|
usbWord_t wValue;
|
|
usbWord_t wIndex;
|
|
usbWord_t wLength;
|
|
}usbRequest_t;
|
|
/* This structure matches the 8 byte setup request */
|
|
#endif
|
|
|
|
/* bmRequestType field in USB setup:
|
|
* d t t r r r r r, where
|
|
* d ..... direction: 0=host->device, 1=device->host
|
|
* t ..... type: 0=standard, 1=class, 2=vendor, 3=reserved
|
|
* r ..... recipient: 0=device, 1=interface, 2=endpoint, 3=other
|
|
*/
|
|
|
|
/* USB setup recipient values */
|
|
#define USBRQ_RCPT_MASK 0x1f
|
|
#define USBRQ_RCPT_DEVICE 0
|
|
#define USBRQ_RCPT_INTERFACE 1
|
|
#define USBRQ_RCPT_ENDPOINT 2
|
|
|
|
/* USB request type values */
|
|
#define USBRQ_TYPE_MASK 0x60
|
|
#define USBRQ_TYPE_STANDARD (0<<5)
|
|
#define USBRQ_TYPE_CLASS (1<<5)
|
|
#define USBRQ_TYPE_VENDOR (2<<5)
|
|
|
|
/* USB direction values: */
|
|
#define USBRQ_DIR_MASK 0x80
|
|
#define USBRQ_DIR_HOST_TO_DEVICE (0<<7)
|
|
#define USBRQ_DIR_DEVICE_TO_HOST (1<<7)
|
|
|
|
/* USB Standard Requests */
|
|
#define USBRQ_GET_STATUS 0
|
|
#define USBRQ_CLEAR_FEATURE 1
|
|
#define USBRQ_SET_FEATURE 3
|
|
#define USBRQ_SET_ADDRESS 5
|
|
#define USBRQ_GET_DESCRIPTOR 6
|
|
#define USBRQ_SET_DESCRIPTOR 7
|
|
#define USBRQ_GET_CONFIGURATION 8
|
|
#define USBRQ_SET_CONFIGURATION 9
|
|
#define USBRQ_GET_INTERFACE 10
|
|
#define USBRQ_SET_INTERFACE 11
|
|
#define USBRQ_SYNCH_FRAME 12
|
|
|
|
/* USB descriptor constants */
|
|
#define USBDESCR_DEVICE 1
|
|
#define USBDESCR_CONFIG 2
|
|
#define USBDESCR_STRING 3
|
|
#define USBDESCR_INTERFACE 4
|
|
#define USBDESCR_ENDPOINT 5
|
|
#define USBDESCR_HID 0x21
|
|
#define USBDESCR_HID_REPORT 0x22
|
|
#define USBDESCR_HID_PHYS 0x23
|
|
|
|
//#define USBATTR_BUSPOWER 0x80 // USB 1.1 does not define this value any more
|
|
#define USBATTR_BUSPOWER 0
|
|
#define USBATTR_SELFPOWER 0x40
|
|
#define USBATTR_REMOTEWAKE 0x20
|
|
|
|
/* USB HID Requests */
|
|
#define USBRQ_HID_GET_REPORT 0x01
|
|
#define USBRQ_HID_GET_IDLE 0x02
|
|
#define USBRQ_HID_GET_PROTOCOL 0x03
|
|
#define USBRQ_HID_SET_REPORT 0x09
|
|
#define USBRQ_HID_SET_IDLE 0x0a
|
|
#define USBRQ_HID_SET_PROTOCOL 0x0b
|
|
|
|
/* ------------------------------------------------------------------------- */
|
|
|
|
#endif /* __usbdrv_h_included__ */
|